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A R T I C L E  I N F O   

Keywords: 
Criteria-based clustering 
Collection network design planning 
Waste management 
MILP reduction techniques 
Waste container location 
Computational complexity 

A B S T R A C T   

The cities face the challenge of optimizing investments in waste management to meet EU standards while 
maintaining economic affordability. One of the issues is the optimal location for specialized waste collection 
points. The main target is to find the lowest number of collection points that would still attain waste production, 
and the average walking distance to the waste container would be kept beneath the tolerable limit for citizens. 
The population density and waste production vary over city parts; thus, the need for specialized containers in 
more populated city centers, industrial zones, or household streets differs. This paper develops a new compu-
tational approach providing a robust generalized decision-support tool for waste collection bin location and 
allocation. This task leads to a mixed-integer linear program which is not solvable for larger cities in a reasonable 
time. Therefore, hierarchical clustering is applied to simplify the model. Two strategies for solving waste bin 
allocation (for multiple variants of the model formulation) are implemented and compared – sub-problem 
definition and representative selection approaches. The resulting framework is tested on the artificial instance 
and a few case studies where the structure and properties of results are discussed. The combination of presented 
approaches proved to be appropriate for large-scale instances. The representative selection approach leads to a 
better distribution of containers within the area in the single-objective model formulation.   

1. Introduction 

Waste Management (WM) has become one of the most challenging 
issues due to urban development, population growth, and lifestyle 
changes (Darmian et al., 2020). It presents an important application area 
where the planning of logistics problems is typically used as the 
increased consumption levels are causing an exacerbation of the prob-
lem (Bing et al., 2016). The waste bin-related network design problems 
needed either for optimization of existing collection networks or 
network design of newly separated waste types is, especially computa-
tionally, a challenging problem asking for new operational research 
approaches (Olmez et al. 2022). Clustering recently provides a suitable 
tool to reduce the computational complexity of decision-making prob-
lems and to solve them reasonably with reasonable results (Caramia & 
Pizzari, 2022). 

Logistics and clustering-related WM problems can be seen from two 
different perspectives. First, issues of regional collection areas from the 
perspective of waste processing facilities, where a node in the collection 

network is a municipality or micro-region (Antunes et al., 2008). Sec-
ond, waste collection of bins and containers from the municipality’s 
perspective. The waste containers are often aggregated into groups. For 
example, waste collection is organized at the street level, where all 
households on the same street are serviced by the same vehicle (Zbib & 
Laporte, 2020). In both cases, clustering reduces the complexity of real- 
size problems, typically large-scale mixed integer problems. Rarely the 
network detail is based on individual bins and containers (Liang et al., 
2022). 

The primary step towards effective waste collection in a municipality 
and subsequent transport to a waste processing facility is the location of 
waste containers and bins (Matušinec et al., 2022). Herein, some 
research has already been done, especially on the socio-economic level 
dealing with various objectives when locating the waste collection 
containers (Tralhão et al., 2010). The formulation of a particular 
mathematical model strongly influences the problem’s computational 
complexity, especially when the model reflects and optimizes multiple 
criteria (Nevrlý et al., 2021). A typical problem in this type of 
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application is the high number of integer (often binary) variables and 
restrictions that go against each other and are so difficult to achieve, 
which leads to the extremely complex computational task not only in 
bigger cities (Chavez et al., 2021). A common solution approach is to 
divide cities into smaller logical parts that can be separately solved to 
achieve optimality. This approach is used across all application fields, 
but it has several problematic points:  

- Inaccuracy of the solution can arrive on the boundaries of separated 
parts.  

- Some parts can still be too large to be solved to optimality. It can 
typically happen in the city centers, where the division into smaller 
parts is not clear  

- Another issue arises when solving the outlying localities. It is worth 
considering placing an option of separate collection for some waste 
types due to expansive waste collection services. 

- Another issue that can arise is the difference between a real infra-
structure of sidewalks and a linear distance (by air); this can occur, e. 
g., in the case of a block of flats with front and back doors. How 
should the task then be partitioned? Does it influence the clustering 
algorithm and the solution, respectively? 

The location of collection containers is a current topic in the field of 
WM, not only due to the societal pressure to increase the rate of sepa-
ration and recycling. Solving complex tasks is thus in the interest of 
current research. 

This paper follows previous studies on the optimal location of waste 
bins and containers when optimizing the number of bins and the walking 
distance of waste producers to the assigned waste bin (Matušinec et al., 
2022, Nevrlý et al., 2021). This paper develops and suggests a robust 
generalized decision-support tool for waste collection bin location and 
allocation. Typically, this task leads to a mixed-integer linear program 
(MILP) which is not solvable for larger problems (e.g., cities) in a 
reasonable time. Therefore, hierarchical clustering is applied to simplify 
the model. Two strategies for solving waste bin allocation are imple-
mented and compared – representative selection (Section 3.4) and sub- 
problem definition (Section 3.5) approaches. 

The rest of the paper is organized as follows. Section 2 provides a 
literature review on the various bin location problems, clustering algo-
rithms in general and existing clustering approaches applied in the WM. 
Section 3 describes the model, which is used in two strategies for waste 
bin network generation. Methods are presented in a detailed step-by- 
step guide. Section 4 demonstrates new approaches to selected areas 
and comments on results from the practical point of view. Finally, the 
paper concludes with Section 5, which also features further applicability 
of the presented approaches and discusses future research possibilities. 

2. Literature review 

This section aims to identify articles focusing on related research 
fields, such as waste network design optimization, operational research 
approaches, and computational optimization, emphasizing clustering 
methods. 

2.1. Waste management in operations research 

Operations research has many applications in solid waste manage-
ment. One of the most important applications is the design of a waste 
collection network in the form of a multi-echelon logistics structure, 
including the collection centers location and allocation of demand areas 
using mathematical models (Eiselt & Marianov, 2015), optimization 
algorithms (Rabbani et al., 2018), and multi-criteria decision-making 
methods (Soltani et al., 2015). Following an operations research 
perspective, the tasks are divided into strategic, affecting the long-term, 
and tactical/operational, affecting the medium-short term (Caramia & 
Pizzari, 2022). Ghiani et al. (2014) provide a survey that studies such a 

division. The disposal collection and location problem has been studied 
both from a strategic perspective (Bing et al., 2016) and from a tactical 
perspective (Eiselt & Marianov, 2014). Another type of waste collection 
network design-related decision is operational, e.g., the transportation 
of municipal waste in the urban environment also releases environ-
mental pollutants in case of improper performing waste transportation 
operations (Expósito-Márquez et al., 2019). 

However, most reviewed articles focus only on single-level single- 
objective models, with just a few delving into multi-objective optimi-
zation. On the other hand, most operations research applications in 
municipal solid waste management involve a location problem to find 
strategic decisions (Ghiani et al., 2014). Some research papers 
employing multi-objective optimization have been published. These 
involve strategic decisions such as Waste-to-Energy facility location 
(Abdallah et al., 2021), designing a network to minimize transportation 
and facility costs, land use stress, and impact on public health (Olapir-
iyakul et al., 2019), or even three joint cost-minimizing objectives being 
the cost of establishing collection centers and collecting waste and 
environmental and social impacts (Darmian et al., 2020). 

Therefore, the upcoming sections attempt to review the waste bin 
location problems from the mathematical modeling perspective, and the 
computational solution approaches perspective. 

2.2. Waste management logistics: Bin location problems 

In recent years, with the emergence of environmental problems, the 
importance of considering the environmental dimension in objective 
functions has been demonstrated. It has become one of the researchers’ 
concerns alongside considering economic factors (Rabbani et al., 2020). 
Over the past decades, WM tasks have become more complex due to 
rapid urbanization, which has led to the emergence of different opti-
mization techniques and heuristic methodologies. Logistics-related WM 
problems belong to the reverse logistics field that deals with the flow of 
products or goods from the consumer to an earlier stage of the supply 
chain. Supply chain management usually needs to solve the location 
problem of network components first (Li, 2019). 

Location and location-allocation optimization are essential parts of 
each waste collection problem (Sbihi & Eglese, 2010). The appropriate 
collection service and frequency (i.e., the number of bin emptying or 
visits to individual houses in door-to-door systems) are strongly linked 
to the capacity allocation to collection sites (i.e., the size and number of 
bins present). Given the demand for a collection site, by increasing 
(reducing, respectively) the number of bins located there, one may 
reduce (increase, respectively) the required service frequency of the site. 
Varying capacity allocation criteria impact the fixed investment costs 
associated with service setup (Hemmelmayr et al., 2014). Optimizing 
waste bin locations and vehicle routings can also be acquired by 
combining mathematical algorithms with GIS (Erfani et al., 2017). Using 
GIS, another analysis of the municipal solid waste (MSW) repository 
location was performed based on street width and population density 
(Oliaei & Fataei, 2016). The results made it possible to evaluate the best 
capacity solution for the given localities. The GIS-based approach was 
also used to re-evaluate the containers’ total number and site for sepa-
rately collected wastes (Zamorano et al., 2009). The excessive number of 
containers may significantly raise purchase and collection costs. 
Methods used in GIS systems do not include clustering or size reduction 
algorithms, so the tailor-made approaches can solve even large-scale 
tasks and specific constraints. 

Problems combining the decisions on location (where to locate) and 
allocation (size and number of bins to locate) are often called location- 
allocation problems. Typical location-allocation models for waste con-
tainers turn out to be MILPs (Ghiani et al., 2012). Thus, currently, some 
research has utterly dealt with the only bin location problem (Herrera- 
Granda et al., 2019). For example, Nevrlý et al. (2021) focus on the 
optimal location of municipal waste containers while searching for a 
trade-off between various criteria. Matušinec et al. (2022) developed a 
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decision-making approach for the optimal location of cooking oils and 
fat waste bins while optimizing the walking distance from waste pro-
ducers to the nearest collection site and the number of containers. 
Problems are formulated and solved with various objective functions 
and limiting constraints while applying different solutions. The over-
view and use of specific modeling attributes in recent research are 
summarized in Table 1. 

Articles that did not specifically describe the detailed features of the 
task or the resources used were not included in the review because their 
contribution is insignificant for the purposes of this research. The way 
the problem was solved was divided into three categories – GIS, 
(mathematical) optimization, and heuristics. For simpler problem for-
mulations, GIS can serve as a quality tool for quick analysis of collection 
point locations. However, its use is often charged by purchasing licenses 
or by subscription. Unfortunately, GIS offers only a limited selection of 
criteria for finding the optimal design. In some papers, this tool is used 
only as a source of input data or in the pre-processing phase. The second 

part defines the articles where a mathematical optimization model was 
formulated and it was subsequently solved by conventional exact algo-
rithms. In some cases, some form of heuristics had to be used. Most 
often, the objective function is defined as single criteria, but even multi- 
objective formulation enjoys great interest. However, case studies are 
usually done only on small to medium-sized tasks, which significantly 
limits the applicability of the presented approaches. When the task is 
already tested on a larger instance, it is only a single-criteria problem 
with limited complexity of constraints, as shown by the detailed analysis 
in Table 2. Common objectives are the walking distance to the nearest 
collection point and the number of collection points/bins. The aim is to 
minimize these objectives, and an appropriate compromise must be 
found in the case of the multi-objective formulation. This may be based 
on the requirements and financial capabilities of the contracting au-
thority of the study. The combination of objectives can cause an increase 
in walking distance for a non-negligible number of waste producers from 
the outlying localities. Herein, the construction of the individual 

Table 1 
Most recent (2018–2022) and significant research on bin sitting.   

Label GIS Optimization Heuristics Waste Objective Max. no. nodes 

Letelier et al. (2022) A yes yes no MSW, recyclable single 230 
Matušinec et al. (2022) B no yes no WCO single thousands 
Yalcinkaya and Uzer (2022) C yes yes no – single 245 
Slavík et al. (2021) D yes no no bio single 21,595 
Mahéo et al. (2023) E yes yes yes – single – 
Gläser and Stücken (2021) F no yes yes – single 288 
Nevrlý et al. (2021) G no yes no Plastic multi 3,000 
Adeleke and Ali (2021) H no yes yes – single 500 
Blazquez and Paredes-Belmar (2020) I no yes yes – single 1,345 
Rathore et al. (2020) J yes yes no – single tens 
Rossit et al. (2020) K no yes yes – multi 115 
Toutouh et al. (2020) L no yes yes – multi 115 
Shi et al. (2020) M yes yes yes e-waste multi 100 
Nevrlý et al. (2019) N no yes no MMW multi – 
Rossit et al. (2019a)  

O 
yes yes no MSW 

(dry and humid) 
multi 88 

Rossit et al. (2019b) P yes yes no MSW multi 88 
Barrena et al. (2019) Q no yes yes – single 39 
Herrera-Granda et al. (2019) R yes yes no MSW multi 999 
Aka and Akyüz (2018) S yes yes no recyclable multi 29 
Yaakoubi et al. (2018) T no yes yes MSW single 75 
Vu et al. (2018) U yes no no MSW single 25 

Note: WCO = waste cooking oil; MMW = mixed municipal waste. 

Table 2 
Application of individual objectives and constraints.  

Paper label A B C D E F G H I J K L M N O P Q R S T U 

Objectives minimizing                      
number of collection points/bins ✓ ✓ x x ✓ – ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x x 
walking distance (different formulations) x x ✓ x x – ✓ x x x ✓ ✓ x ✓ x x x ✓ x x x 
number of address points within walking distance of the 

given value 
x x x x x x x x x x x x x x x x x x x x x 

the estimated cost of bin allocation and operation within a 
certain period (e.g., five years) 

x x x x x x ✓ x x x ✓ x x x ✓ ✓ x x x ✓ x 

Objectives maximizing                      
number of address points within a threshold distance (e.g., 

80 m)/maximal coverage 
x x x ✓ x x x x x x x x x x x x x x x x ✓ 

total utilization of collection points x x x x x x x x x x x x x x x x x x x x x 
Constraints                      
the capacity of collection points/bins ✓ ✓ x ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓ ✓ ✓ ✓ x ✓ x 
maximal number of collection points or bins x x x ✓ x x ✓ ✓ ✓ ✓ x x ✓ x ✓ ✓ ✓ ✓ x x ✓ 
maximal number of bins x x ✓ x x x ✓ ✓ ✓ ✓ x x ✓ x ✓ ✓ ✓ ✓ x x x 
minimal utilization of collection points x x x x x x ✓ x x x x x x ✓ x x x x x x x 
maximal average walking distance x ✓ x x x x x x x x x x x x x x x x x x x 
maximal individual walking distance x x x x x ✓ x ✓ x x ✓ ✓ x x ✓ ✓ x ✓ x x x 
maximal volume-weighted walking distance x x x x x x ✓ x x x x x x x x x x x x x x 
restriction on the number of address points within walking 

distance over a given value 
x x x x x x x x x x x x x x x x x x x x x 

relations between bins for different commodities x x x x x x x x x x x x x x x x x x x x x 

*Note: ✓=yes; x = no; -=no information. 
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walking distance criterion seems to be an option. 
Table 2 shows the most frequently used criteria for optimization, 

both in the form of the objective function and in the form of constraints. 
The review also makes clear what trends further research will follow. 
The models do not consider the continuity of collection points regarding 
different waste fractions. The selected collection point should be used 
for several types of waste, with each waste defining its own maximum 
average walking distance. Suppose the (average) walking distance 
condition is constructed via a constraint in the mathematical model. In 
that case, it can cause the walking distance condition to be satisfied, but 
the volume of waste in containers is decreased, which is an undesirable 
effect. Therefore, it is necessary to specify the individual conditions to be 
mutually consistent. The utilization of collection points should also be 
considered regarding the current and future household separation rate 
of individual waste streams. For more complex types of tasks or large 
instances, there is no universal tool for approaching a problem’s 
reduction and solution. 

Planning of waste containers number and locations is a long-term 
and permanently solved problem to a considerable extent. Due to 
ongoing housing construction and urban development and growth in the 
number of waste fractions separated and collected, it is necessary to 
react and increase the collection capacity and the density of the 
collection network. Due to the constant maintenance of the infrastruc-
ture (repair of roads, sidewalks, hot water, gas, sewerage, parking), 
adjustment of the location within the city is necessary almost continu-
ously. Regarding prohibited current locations, the key is the capacity of 
collection points. Both cases should be solvable in a reasonable time 
with acceptable precision to react and re-plane the collection network, 
possibly fixing most of the collection infrastructure. Different task for-
mulations have different natures of accuracy and computation time. The 
aim is to provide a basis for a procedure for solving real case studies. 

2.3. Clustering methods and waste bin location problems 

Cluster analysis simplifies too complex or too large problems 
(Ordoñez et al., 2017). Typical logistics applications include location 
problems, allocation problems, network flow, or collection tasks, where 
the data are mostly aggregated according to the legislative separation of 
the area (Moskvichev et al., 2021). Clustering algorithms can be func-
tionally split into a known order and unknown order. While the number 
of clusters is used as an input parameter in the known-order variant, 
unknown-order algorithms do not require the modulation order as input, 
instead of relying on factors such as density to determine the number of 
clusters (Pla-Sacristán et al., 2019). The most known algorithms that 
belong to these categories are as follow. For the unknown-order variant, 
it is the density-based spatial clustering of applications with noise (the 
so-called DBSCAN), ordering points to identify the clustering structure 
(OPTICS), or hierarchical clustering. For the known-order variant, it is k- 
means, k-medoids, or fuzzy c-means (Mouton et al., 2020). The classical 
clustering algorithms can also be classified into the following several 
kinds: partitional clustering, hierarchical clustering, density-based 
clustering, grid clustering, and the model algorithm (Kim et al., 2009; 
Li, 2019). The partition clustering algorithm, aimed at the database 
object, calculates the distance from all the samples to the cluster center 
(Xu et al., 2020). 

Some studies proposed heuristic algorithms based on the nearest 
distance or clustering. The clustering of nodes using the k-medoids 
method was proposed by Mokhtarzadeh et al. (2021). K-medoids is one 
of the two most famous algorithms for clustering data; the other is k- 
means. However, as was mentioned above, these algorithms separate 
data into predefined k different groups, attempting to minimize the 
distance between nodes in each group. Hierarchical clustering is a 
suitable approach for the so-called (multi-criteria) territory partitioning 
(Lidouh & De Smet, 2016). Hierarchical clustering has also been applied 
for territory partitioning problems considering a maximum within- 
cluster distance, i.e., clusters where all distances were less than the 

chosen maximum transportation distance (Laasasenaho et al., 2019). 
Combining clustering and logistics decisions has been widely applied 

(Wang et al., 2018). Hemmelmayr et al. (2014) developed a model and 
algorithm for integrated bin allocation and vehicle routing planning. 
They determine the service frequency and the days of visit associated 
with this service frequency. The solution approach combines an effective 
variable neighborhood search metaheuristic for the routing part with a 
MILP-based exact method for the bin allocation part. They follow a 
route-first, cluster-second method initially proposed by Beasley (1983). 
More recently, Jammeli et al. (2021) provided a bi-objective model with 
randomness to handle the optimization of waste collection. Due to many 
variables and the high degree of uncertainty, it was impossible to solve 
the problem by an exact algorithm in a reasonable computational time. 

Recently, clustering methods have been applied to reduce the 
computational complexity of waste bin location problems, typically 
leading to mixed-integer optimization tasks. Caramia and Pizzari (2022) 
used fractional programming to solve two strategic objectives related to 
the costs incurred and utility generated in servicing customers when 
clustering, location, and allocation are performed on the supply chain 
associated with the considered WM problem. In their problem formu-
lation, the municipality, as a decision-maker, organizes citizens and 
collection centers through a clustering method, where a cluster of citi-
zens is assigned to one specific collection center. 

The review does not provide any reason to prefer special approaches 
regarding subsequent optimization. No link to the character of the ter-
ritorial division was analyzed either, which identifies a gap for further 
research. Usually, k-means is used where the number of clusters is 
specified by the input, while the selected number is related to the task 
solvability. 

2.4. Novelty and contribution 

This paper follows the previous studies (Matušinec et al., 2022, 
Nevrlý et al., 2021) on the optimal location of waste bins and containers 
when optimizing two contradictory objectives, the number of bins and 
the walking distance of waste producers to the assigned waste bin. Such 
optimization problem, especially in larger cities (large-scale problems), 
leads to computationally extremely complex tasks (Matušinec et al., 
2022). The calculation time of each task depends on many factors. One 
of the biggest influences is the selected capacity at individual sites in 
connection with the total waste production in the network. The waste 
generation rate is derived from the specified frequency of the collection 
cycle. By defining these conditions, it is possible to calculate the theo-
retical value of the minimum number of collection points. The walking 
distance condition then creates pressure to open more collection points. 

The literature review above shows that using other tools like GIS is 
not possible, especially when defining multiple objectives or complex 
constraints. Using the discussed modeling ideas in combination with 
clustering provides a suitable approach to reduce the complexity of the 
computational problems and so to solve the problem in a reasonable 
time. The main contribution of this work is to propose a novel approach 
to reduce the complexity of bin location problems by the following ap-
proaches that are compared in this paper:  

1. Applying a hierarchical clustering for selecting uniformly located 
representatives and the number of edges (the edge represents 
assigning a waste producer to one specific bin) is also significantly 
reduced. The aim is to create the maximal number of clusters with 
one representative; the total number of representatives is solvable for 
the whole area (Section 3.4).  

2. Applying a hierarchical clustering for splitting the complex problem 
into solvable sub-problems such that the sub-problems are similarly 
complex considering all possible edges. The aim is to create a mini-
mal number of clusters such that the largest cluster (with the highest 
number of nodes) is still solvable with exact methods (Section 3.5) or 
to define the clusters’ size, which the previous approach can solve. 
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The combination of these approaches was even proved to be the best 
option for large-scale instances. The approach also considers noise 
filtering prior to the optimization, which slightly reduces the task size, 
and especially, it bans address points by providing separate containers in 
sparsely populated areas. The filtering is performed through the waste 
quantity evaluation in the predefined radius. 

Therefore, the main contribution of this paper is to develop new 
computational approaches to the waste container location problem with 
specific constraints. More specifically, the paper provides suitable 
optimization tools to solve the large-scale problems on waste bin 
network design when optimizing the number of bins and average wal-
kling distance. Especially two different clustering approaches are tested 
and analyzed in combination with a commercial optimization solver 
(CPLEX) that is unable to solve real-scale problems without a method as 
clustering used. 

3. Methods and algorithms 

The optimization model used in the proposed approaches is adapted 
from Matušinec et al. (2022) and Nevrlý et al. (2021); see Appendix A. 
The single-objective formulation was demonstrated for the fat and 
cooking oil wastes. It considers the total number of containers as the 
objective function while restricting the average walking distance be-
tween addresses (buildings associated with a specific number of occu-
pying inhabitants) and assigned collection points. Each collection point 
has a predefined capacity, which cannot be exceeded by the cumulative 
waste generation of assigned address points. The model allows situating 
of containers directly in front of all address points. Since the model is 
formulated as a MILP with a high number of binary variables and 

constraints, it is computationally demanding for larger instances. 
However, appropriately chosen simplifications can help significantly 
speed up or even enable the calculation. 

3.1. Workflow of approaches 

Approaches for simplification will be dealt with in this section by 
applying certain clustering steps. Fig. 1 defines all steps of tested algo-
rithms. It starts with noise filtering, eliminating isolated points in terms 
of cumulative waste production in the neighborhood. Then, it is divided 
into two branches, in which different approaches are applied to simplify 
the original task. In the end, the problem is always solved by the exact 
method within the GAMS modeling environment. The solution is always 
divided into two steps – container location and then the allocation of 
address points to the collection points so that the walking distance is 
minimal. The task reduction approaches are described in detail in the 
following text. 

3.2. Noise filtering 

Noise in this task is defined as address points that are too distant from 
the rest of the network. These are detached dwellings, often also cottage 
areas or smaller clusters of family houses. It is not desirable to allocate 
bins in such areas due to insufficient cumulative waste production and 
the high costs of collecting these isolated and almost empty bins. 
Therefore, the noise was defined by the criterion for each address point 
as follows:  

- If the sum of waste in the radius (given by mean walking distance) is 
lower than, e.g., 10% of the container capacity, the address point is 
identified as noise. A different walking distance can be targeted for 
each type of waste, as well as the minimum utilization of the allo-
cated capacity of the collection point. In this regard, consultation 
with WM experts is always appropriate. 

This condition will reduce the total number of points considered and 
ensure that bins are not distributed in sparsely populated areas. 

3.3. Optional capacitated K-means clustering 

This step is optional for larger problem instances. If the time 
complexity of the whole task is too high, the instance can be divided into 
smaller instances with a size constraint. The Capacitated K-Means al-
gorithm (Geetha et al., 2009) was selected thanks to its ability to pro-
duce constraint-sized clusters and lower computational complexity. This 
approach was used for the second case study presented in this paper (see 
Section 4.5). 

3.4. Representative selection 

The first approach tries to reduce the total number of edges within 
the network. Since the graph is defined as bipartite, it connects all 
address points with all candidate locations for the container. A similar 
variant of reducing the size of the task is to limit it to a certain per-
centage of the nearest candidates for collection points for each address 
point. Usually, each address point can be at the same time also the 
candidate location for the container. The number of edges thus increases 
with the square of the number of address points. This method will thus 
seek some representatives, which will reduce the number of candidate 
locations. It will still be allowed to place the container in front of each 
address point if it reaches certain self-sufficiency (no other edges will be 
assigned). The selection of these representative sites will be made using 
a modified hierarchical method that considers the details of waste pro-
duction and other aspects. It can be defined as updated agglomerative 
hierarchical clustering with Ward’s method (Ward, 1963). Ward’s 
method has been chosen because it can generate compact clusters. 

Fig. 1. Scheme of applied steps.  
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Moreover, it performs well in separating clusters if there is noise 
between them. Updates in this procedure represent a repeated applica-
tion of the method until the goal is reached. Each iteration follows these 
rules:  

- Stops at the given number of clusters – equal to the number of 
representatives.  

- The maximum size of the cluster is limited to 100% of the container 
capacity. Merging of two clusters is possible only if the sum of their 
waste production is lower than the limit. This condition is integrated 
by distance penalization (close clusters that should be merged but 
overcome the capacity are considered far apart). 

The final step of the method corresponds with the calculation of 
representatives. Address points that are closest to the cluster center in 
terms of distance are selected as representatives. 

3.5. Sub-problem definition 

Another way to simplify the size of a task is to divide it into several 
more solvable subtasks. In this method, address points will be distrib-
uted into groups with relatively similar sizes (with low computational 
complexity). Each of these groups defines a separate problem that will 
be solved by ordinary methods to achieve optimality. However, such a 
simplification may disrupt the solution on the boundaries of each group 
(cluster). The inaccuracies will be discussed in the case study. The 
method is also the updated agglomerative hierarchical clustering with 
Ward’s method, however, with different rules and criteria: 

- Maximum cluster size is limited (e.g., 2,000 address points with re-
gard to the model formulation and common housing development in 
the Czech Republic).  

- If there are no more clusters to merge without breaking the size limit 
– stop. 

By applying this method, several clusters are defined, where for each 
is the problem solved to optimality. This procedure is limited mainly by 
computational complexity according to the predefined size of the 
cluster. 

3.6. Artificial problem testing 

An artificial problem instance was generated in order to test various 
approaches to the optimization problem at hand. The instance is 
comprised of 2,000 address points in a radius of 500 m generated by a 
uniform pseudo-random number generator. For each address point, the 
number of inhabitants was generated randomly from the range of 2 to 
17. 

Both approaches, i.e., representative selection (Section 3.4) and sub- 
problem definition (Section 3.5) were tested on this artificial problem 
instance to determine which approach is more suitable and what is the 
influence of the number of representatives and maximum cluster size on 
the problem-solving. Moreover, the problem specification with multi- 
objective minimization of the average walking distance and number of 
container locations was tested alongside the original problem definition 
with maximum average walking distance constraint and minimization of 
the number of container locations (see Appendix A for model specifi-
cations). The maximum container capacity at each container location 
was set to 1,100 l; the maximum allowed walking distance for the multi- 
objective approach was set to 200 m and the maximum allowed average 
walking distance was set to 100 m. 

For the representative selection approach, the number of represen-
tatives was set from 2% up to 16% with the step of 2% and a special case 
of 100% representatives – complete problem instance. For the sub- 
problem definition, the maximum sizes of clusters were set to 200, 
250, 334, 500, and 1,000 address points. The results for the multi- 
objective problem definition are depicted in Table B.1 and Table B.2 
in Appendix B (representative selection and sub-problem definition, 
respectively), and the results for the single-objective case are in 
Table C.1 and Table C.2 in Appendix C. The results of calculation time 
requirements are visualized in Fig. 2, using a logarithmic scale. For the 
small testing instance of 2,000 address points (corresponding to a small 
municipality), the calculation time rises when the number of clusters 
decreases and the share of selected representatives increase. The higher 
the number of clusters, the fewer address points are in each cluster, and 
thus each individual task has fewer variables resulting in a shorter 
calculation time. Especially the multi-objective task with a 100% share 
of representatives presents an extremely complex task (its solution was 
found within several days of computations). 

The empirical results do not show monotonicity, which is given by 
the concrete computational problem; however, the increasing trend in 
computational trend is evident. It can also be seen in the result tables 
that the multi-objective approach might not be suitable for larger 
problem instances since the time complexity is high, and therefore the 
result would not be produced in a reasonable time. The need for 
simplification techniques is therefore necessary. It is also apparent that 
the solution in the representative case is highly dependent on the frac-
tion of addresses that are considered as representants, which is not so 
pronounced in the single-objective case. 

A similar procedure was applied to different formulations of the 
single-objective model. The individual problem formulations are listed 
in Appendix A. A total of four variants of single-objective problems were 
compiled from the equations. Variant 1 (V1) distributes a predetermined 
number of collection points with unlimited capacity while minimizing 
the average walking distance. Variant 2 (V2) limits the average walking 

Fig. 2. Calculation times for artificial instance – different approaches and 
formulations. 

Fig. 3. Calculation times for artificial instances of varying sizes – different 
single-objective variants. 
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distance to the selected threshold (target), the capacity of collection 
points is limited, and the number of collection points is minimized. In 
variant 3 (V3), the aim is to maximize the minimum utilization of all 
collection points while limiting the average walking distance and the 
capacity of collection points. Variant 4 (V4) limits the number of 
collection points with unlimited capacity and minimizes the maximum 
individual walking distance. These models were tested on 21 artificial 
instances with varying instance sizes (from 1,000 to 3,000) with a fixed 
number of selected representatives – 200 (see Fig. 3). The computational 
budget for the CPLEX optimizer was limited to one hour. 

As can be seen in Fig. 3, the computational time for V1 and V2 is 

constant, while for V3, it increases with the instance size. For V4, the 
CPLEX optimizer was not able to provide a feasible solution within the 
specified time budget. A case of an outlier can be seen, for instance, with 
1,100 address points, where the computational time and also the num-
ber of collection points (Fig. 4) are not as expected. In the authors’ 
opinion, this anomaly can be accounted to the pseudo-random genera-
tion of the artificial instance. 

In order to verify the CPLEX solver result, the optimization of these 
four problem variants (V1, V2, V3, and V4) was also performed by the 
metaheuristic algorithm DISH (Viktorin et al. 2019) specifically tuned 
for these problems. The DISH algorithm was providing locations of the 
containers, and for V2, V3, and V4, the CPLEX was solving the waste 
logistic and providing the objective function value as feedback for the 
metaheuristic. The stopping criterion for each optimization run was set 
to one hour of computational time, and due to the stochasticity of the 
method, ten runs for each problem variant and problem instance were 
performed to get a reasonable statistic. The average result from the 
metaheuristic over the ten runs is compared to the CPLEX solver solution 
in the following figures. 

As can be seen from Fig. 5, the CPLEX solver is able to provide a 
solution with a better average walking distance for V1 than the meta-
heuristic approach for all problem instances. A similar result is displayed 
in Fig. 6, which shows the performance of both approaches on problem 
variant V2. The metaheuristic approach is able to provide a competitive 
solution for larger instances (2,100 to 2,800 address points) but was 
unable to provide a feasible solution within the given computational 
time for the two largest instances (2,900 and 3,000 address points). A 
different result can be seen for the V3, where the DISH metaheuristic is 
able to provide a solution for larger instances of the problem with higher 
minimal utilization of containers while the CPLEX solver solution has at 

Fig. 4. Container counts for artificial instances of varying sizes – different 
single-objective variants. 

Fig. 5. Minimized average walking distance on artificial instances of different 
sizes (problem variant V1) – comparison between CPLEX solver (V1) and DISH 
(V1-DISH). 

Fig. 6. Minimized container count on artificial instances of different sizes 
(problem variant V2) – comparison between CPLEX solver (V2) and DISH 
(V2-DISH). 

Fig. 7. Maximized minimal container load on artificial instances of different 
sizes (problem variant V3) – comparison between CPLEX solver (V3) and DISH 
(V3-DISH). 

Fig. 8. Calculation times for artificial instances with varying ratios of repre-
sentatives – different single-objective variants. 
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least one container on the minimal allowed utilization (60 l). The DISH 
solution also usually uses fewer containers while preserving the condi-
tion of a maximal average walking distance of 50 m. Thus, for this type 
of problem, the metaheuristic is able to provide a better solution but for 
the price of longer computation. On the other hand, the metaheuristic 
was not able to provide a feasible solution within one hour of compu-
tational time for any of the problem instances of V4. The result tables are 
available in Appendix D. Fig. 7 

Further calculation time testing was performed for the representative 
selection method. The results are shown in Fig. 8; they point out the 
significant differences in computational complexity between the tested 
variants. The values on the y-axis are in a logarithmic scale to better 
represent the differences. V3 achieves the best results in terms of 
calculation speed, and even for the growing proportion of considered 
representatives, the calculation time is in the order of units up to tens of 
seconds. V2 calculation time is an order of magnitude higher value. The 
calculation time of V1 reaches the level of thousands of seconds. V4 is 
the most demanding in calculation time. It was not calculated for the 
chosen simplifications even after a few days, except for the scenario with 

2% representatives. Due to the small size of the test task, the computa-
tional time is relatively enormous even when using simplification 
techniques, which underlines the importance of their application. The 
results for the sub-problem definition method have a similar character. 

For the solution of real instances, it is recommended to use a com-
bination of both approaches or individual approaches based on the 
targets of the calculations. If a fast solution with as few containers as 
possible is desired, then it is advisable to use a representative selection 
with a few percent share. On the other hand, if a slightly larger number 
of collection points is not important, the sub-problem definition takes 
place. The case study will demonstrate the approaches on a single- 
objective variant of the model. 

4. Case studies 

The first case study selected in this work considers the two ap-
proaches mentioned above, representative selection (Section 3.4) and 
sub-problem definition (Section 3.5), for the city of Zlín (Czech Re-
public) and the allocation of cooking oils and fat waste containers since 
the presented approach has especially contributed to the waste fractions 
with a less density (of the collection network) and production (Matu-
šinec et al., 2022). This city was selected because it features a densely 
populated city center, large housing estates typical for Czech cities, in-
dustrial zone and old household streets, and remote populated satellite 
towns. However, it is still small enough to demonstrate the benefits and 
drawbacks of both approaches visibly. The main characteristics (number 
of address points and population) of the city of Zlín and the waste 
collection details are summarized in Table 3. All collection points were 
assumed to have only a single container with a predefined capacity. 
Waste production amount is adopted for cooking oil and fat waste. The 
waste production is given per collection cycle – regular collection every 

Table 3 
The city of Zlín – address count and population (source: Czech Statistical Office, 
the year 2018).  

Characteristics Units Number 

Address points’ count [-] 6,571 
Address points’ count after noise filtering [-] 6,212 
Population [cap] 51,721 
Population after noise filtering [cap] 50,903 
Waste container capacity [l] 240 
Waste production [l/cap/collection cycle] 0.25 
Maximum avg. walking distance [m] 500  

Fig. 9. The city of Zlín – approximate structure map.  
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four weeks – while the waste production quantity was determined ac-
cording to the steps described in Matušinec et al. (2022). The overall 
structure of the city addresses is visible in Fig. 9. 

As can be derived from Table 3, the number of people capable of 
filling the waste container in one collection cycle is 240/0.25 = 960. 
Thus, the whole city’s minimal number of waste containers would be 
51,721/960 = 53.88 ≈ 54. However, this number does not attain the 
average walking distance condition and does not reflect the undesirable 
collection areas – sparsely populated areas (see next Section 4.1 with 
noise filtering). The resulting number of containers covering a given 
area will thus start at the smallest possible number, and given these 
limitations, their number will increase, but it will happen that the 
resulting value will remain at this number. 

4.1. Zlín – Noise filtering 

The first step in evaluating this case study is filtering the noise points, 
which are not desirable for waste bin allocation. The result after 
applying the noise filtering method described in Section 3.1 is depicted 
in Fig. 10. It can be seen that the industrial area was successfully filtered 
out since there is a low number of address points with a low population. 
The same goes for less populated and remote areas. The numbers of 
addresses and inhabitants filtered out are in Table 3. The noise ratio was 
5.8% for the address points’ count and 1.6% for the population. 

The noise filtering leads to a minimal number of waste containers, 
50,903 / 960 = 53.02 ≈ 54, which is still the same minimal number as it 
was for the unfiltered dataset. Although the minimal number of waste 
containers still does not attain the average walking distance condition, 
the representative selection approach is able to provide a solution with 
exactly 54 waste containers, as is described in the next section. 

4.2. Zlín – Representative selection 

In this approach, approximately 10% (600) of the data address 

points are considered to allocate waste containers by the method 
described in Section 3.3. This approach generates evenly distributed 
waste collection representatives, which are depicted in Fig. 10. The map 
also depicts the final step of the representative selection approach, 
which is the selection of waste container locations by the optimization 
model solved in GAMS software by CPLEX optimizer (Gams Develop-
ment Corportaion, 2013). 

This approach yields 54 collection points, with an average walking 
distance of exactly 500 m and an average container utilization of 
98.19%. The computation time needed to evaluate this approach was 
approximately 6.5 h for clustering and model preparation and 4.5 h for 
GAMS solving. The approach works very well in determining the mini-
mum number of collection points, but it does not place the containers 
appropriately within the space. The approach to fulfill this purpose is a 
multi-objective formulation. 

4.3. Zlín – Sub-problem definition 

It was experimentally determined on the same computer (AMD 
Ryzen 9 3900X 12cores 3.8 GHz, 32 GB RAM, Nvidia GeForce GT 710) 
that the GAMS CPLEX solver is able to provide a solution for a fully 
connected network of approximately two thousand clustered address 
points in a reasonable time (2.5 h). It is assumed that larger clusters for 
this case study significantly increase the computational complexity since 
the average walking distance increases over 500 m for multiple waste 
container allocation points, and the solution space is much more con-
strained. Thus, the data address points were according to the method 
described in Section 3.4. hierarchically clustered into four clusters 
(1,084, 1,739, 1,455, and 1,934 address points in each), and those four 
clusters were solved individually to optimality by GAMS software. The 
combined solution is provided in Fig. 11. 

The result of this approach is 55 selected locations for waste con-
tainers with an average walking distance of exactly 500 m and an 
average container utilization of 96.41%. The computation time needed 

Fig. 10. The city of Zlín – representative selection (gray points = address points, red points = representatives, green points = noise, blue points = waste 
container locations). 
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for the evaluation of this approach was approximately 6.5 h for clus-
tering and model preparation and 0.6 h for GAMS solving. From the 
point of view of the distribution of collection points in space, this 
approach looks much worse than the representative selection method. 

4.4. Zlín – Approach comparison 

While the resulting number of waste containers is 54 for represen-
tative selection and 55 for the sub-problem definition approach, 
respectively, and the average walking distance is similarly below the 
targeted limit (the sub-problem definition performs a little bit better 
because of a higher number of allocated collection points). The main 
difference lies in the global location of waste containers. It can be seen in 
Fig. 8 that the satellite town in the south-west part of the map gets 
allocated to one of the collection points in a north-bound housing estate, 

which would be inconvenient for residents from that satellite town since 
they would have to travel to a distant location and probably would 
rather choose to not recycle. Moreover, it can be seen that the sub- 
problem definition approach sometimes tends to select waste 
container locations close to one another. This is due to the used model 
formulation (single-objective in Appendix A), optimizing the number of 
waste collection points w. r. t. the maximal average walking distance 
condition. The representative selection approach provides relatively 
evenly distributed representants after the clustering step, and thus it is 
able to provide a more evenly distributed collection infrastructure. This 
leads to easily implementable solutions for real-world scenarios when 
using the representative selection approach. The optimization of the 
average walking distance at the same time in the complex multi-criteria 
model would require distribution into more clusters or a reduced share 
of selected representatives (depending on the number of address points 
in the instance). 

4.5. Prague – Case study 

For the second case study, the capital and biggest city of the Czech 
Republic was selected. It is several times bigger than Zlín, which was 
selected in the previous case study. Its population is ca. 1.2 million and 
involves more than 100 thousand address points (see Table 4). Prague 
involves all the various area characteristics discussed above; that is a 
rational reason for testing the developed approach. The distribution of 
address points is depicted in Fig. 9, and as can be seen, a small number of 
address points are on the outskirts of the city. These points are filtered 

Fig. 11. The city of Zlín – waste container locations (black points) selected by sub-problem definition approach.  

Table 4 
The city of Prague – address count and population (source: Czech Statistical 
Office, the year 2018).  

Characteristics Units Number 

Address points’ count [-] 107,398 
Address points’ count after noise filtering [-] 102,927 
Population [cap] 1,246,774 
Population after noise filtering [cap] 1,235,352 
Waste container capacity [l] 240 
Waste production [l/cap/collection cycle] 0.25 
Maximum avg. walking distance [m] 500  
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out in the noise filtering step, but for the purpose of better visual rep-
resentation and space-saving, upcoming figures depict the only area 
with no filtered points. Thanks to the benefits of the representative se-
lection approach described in Section 4.4, it was selected for the waste 
collection bins allocation in Prague as well. 

The first step in this case study is to remove noise address points, 
which would be undesirable for waste collection, and it is the same 
process as described in Section 3.1. The results of this step are summa-
rized in Table 5. This leads to a minimum number of 1,287 waste bins 
(1,235,352 / 960 = 1,286.83 ≈ 1,287) without the maximum walking 
distance constraint. The noise ratio was 4.3% for the address points’ 
count and 0.9% for the population. 

Since the resulting data address points’ count is still over 100,000, 
the representative selection approach with the suggested 10% of address 
points considered as representants would lead to a complex task 

unsolvable in a reasonable time. Thus, an additional clustering step (see 
Section 3.2) is used for the division of the data set into smaller blocks 
that would be solvable but would still provide a complex solution. It was 
shown in the first case study that a city of approximately 6,200 data 
address points is solvable in a fairly reasonable time, and therefore, the 
proposed clustering characteristics were selected as follows. The 
maximum number of address points in a cluster was set to 7,500, and the 
desired number of clusters k was set to 14 (102,927 / 7,500 = 13.72 ≈
14). Afterward, the representative selection was applied in each cluster. 
The number of representatives was kept the same as in the first case 
study – 600 for each cluster. The final step is a selection of waste 
container locations in each cluster by the optimization model solved in 
GAMS software by CPLEX optimizer (Gams Development Corportaion, 
2013). The result of clustering and waste container locations are pre-
sented in Fig. 12. The characteristics of clusters and results are 

Table 5 
The city of Prague – clusters’ characteristics and statistics with time complexity.  

Cluster 1 2 3 4 5 6 7 

Address count 7,500 6,991 7,500 7,500 7,500 7,500 7,500 
Population 44,363 24,530 73,106 98,453 94,440 179,391 84,388 
Minimum waste container count (rounded up) 47 26 77 103 99 187 88 
Waste containers (difference from minimum) 47 (0) 27 (+1) 77 (0) 112 (+9) 99 (0) 193 (+6) 92 (+4) 
Avg. container utilization [%] 98.32 94.64 98.90 91.57 99.37 96.82 95.55 
Model preparation time [h] 5.13 9.72 6.14 5.58 5.12 5.25 5.13 
GAMS solution [h] 13.52 31.09 14.20 6.90 6.99 5.12 4.39 
Cluster 8 9 10 11 12 13 14 
Address count 7,500 5,936 7,500 7,500 7,500 7,500 7,500 
Population 48,497 76,123 71,193 99,492 113,884 108,188 119,304 
Minimum waste container count (rounded up) 51 80 75 104 119 113 125 
Waste containers (difference from minimum) 51 (0) 80 (0) 80 (+5) 104 (0) 121 (+2) 113 (0) 132 (+7) 
Avg. container utilization [%] 99.05 99.12 92.70 99.65 98.04 99.73 94.15 
Model preparation time [h] 2.55 1.14 2.50 2.42 2.43 2.42 1.92 
GAMS solution [h] 14.74 1.14 13.85 5.44 11.75 5.19 11.79  

Fig. 12. The city of Prague – clustering (without noise) and waste container locations by representative approach.  
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summarized in Table 5, together with the time needed for model prep-
aration and solution. An example of a detailed solution of the most 
populated cluster #6 is presented in Fig. 13. 

The representative selection approach solving the waste collection 
bins locations in Prague yields a solution with 1,328 bins and average 
utilization of 96.90% w.r.t. the maximum walking distance condition of 
500 m. This is only 34 bins more than the minimum needed number in 
clustered variant (1,294) and 41 bins more than in the not clustered 
variant (1,287). The results confirm that when the CPLEX solver deploys 
the minimum possible number of containers for a cluster and such a 
solution exists, it is much faster compared to the instance, where some 
extra must be added (e.g., see clusters #2, #10, #12, #14). At the same 
time, it can be seen that this is not always the case, which shows that it is 
very difficult or impossible to find a general description of the task’s 
nature and suggest general recommendations. 

5. Discussion and conclusions 

This paper has aimed to suggest a general clustering-based compu-
tational approach to solve large waste collection network design prob-
lems. A social-managerial problem can arise when a collection point 
must be ensured in compliance with the environment, i.e., finding a 
specific location for a bay with containers may not be possible in some 
environments. The authors follow up on their previous research, espe-
cially Matušinec et al. (2022), where the authors provide a mathemat-
ical model to optimize waste bin location from a city perspective. The 
optimal model reflects a walking distance constraint that was developed 
by Nevrlý et al. (2021). However, large-scale problems could not be 
solved with traditional optimization models and solvers, so this paper 
deals with hierarchical and other clustering-based algorithms to provide 

suitable simplification approaches to solve such problems. Since the 
paper provides a new model and solution approach, no alternative 
methodology leading to some comparable results could be used and 
tested. 

Based on testing computations for various formulations of waste bin 
location problems, a new approach to large-scale problems simplifica-
tion, allowing solving the problem in a reasonable time, was developed. 
However, regarding each particular problem, it is necessary to perform 
some calibration computations exposing the computational limits of the 
particular problem and especially a solvable problem size. Based on such 
computational analysis, the input parameters for the developed 
approach are determined, and so the large-scale problems are simplified 
to solvable clusters. A new view of such a problem can be to seek 
maximal clusters that are computationally solvable and have a high 
number of clusters while respecting a suitable combination of 
mentioned conditions and criteria. One central node (medoid) can be 
used as a representative for a potential waste container(s) location. The 
solution to such a problem is the main novelty of the presented research, 
motivated by the WM’s real problems. However, the approach is defined 
in a general way and so is transferable to other application areas. The 
optimal location of public transport stations and the optimal infra-
structure layout of local doctors, pharmacies, shops, etc., can show an 
example. 

When comparing the results of the two presented methods (repre-
sentative selection and sub-problem definition), the resulting number of 
allocated containers is very similar. The difference can be seen in the 
containers’ location, where the sub-problem definition sometimes tends 
to select containers close to each other. It is also caused by the selected 
model (see Appendix A), where the walking distance is included only in 
the form of constraint. The representative selection method should be 

Fig. 13. The city of Prague – cluster #6 (most populated) – waste container locations (Black points) selected by representative selection approach.  
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used when the minimum number of collection points is strictly required. 
The solution to multi-objective formulation also performed better for 

the representative selection method (artificial instance). Unfortunately, 
multi-criteria models are even worse at getting solutions fast, so the 
maximal size of clusters and the percentage of representatives have to be 
adapted accordingly. The representative selection method is better for 
the single-objective formulation because it provides evenly distributed 
representatives within the area. In each municipality, the number of 
separately collected waste is constantly increasing, while each waste has 
different characteristics and requirements for the density of the collec-
tion network. The density also has an economic impact in the form of 
collection costs. The amendment of the legislation forces mandatory 
textile collection from 2025. Mayors and people responsible for changes 
to the collection system (densification of the bin collection network) will 
welcome the proposed approaches and different formulations of the 
models, as they will be able to compare their results and subsequently 
make managerial decisions. 

The approach adopted for the city of Prague resulted in 14 clusters, 
which were afterward solved by the presented representative selection 
approach. The combination of these methods seems the best option for 
solving large-scale instances, as in the proposed case study. However, 
some clusters are distributed in space with isolated, separate units. 
These might be identified prior to the optimization and possibly solved 
separately. This approach could lead to too many separate clusters, 
which is not desirable. Further research within this area is needed. The 
authors are inclined to the possibility of not solving the process of 
creating clusters with a deterministic number of clusters but dividing the 
problem according to the density of areas and further dividing the 
clusters that do not meet the size limits. Choosing a combination of the 
proposed procedures with another logical criterion may be ideal. The 
proposed approaches cannot generally find optimal values; still, at a 
small cost of deviation from the optimum, they enable computability in 
a reasonable time and subsequent implementation of the outputs to 
actual bin deployment. 

The suggested approach can be applied in various other case studies. 
Besides the applications and possible algorithms improvements, there 
are several potential directions for future research. One of them is 
reflecting the difference between a real infrastructure of sidewalks and a 
linear distance (by air) which can typically occur when considering a 

block of flats with front and back doors. This can lead to several research 
questions: Does it have significant benefits? How should the task be 
partitioned? Does it influence the clustering algorithm and the solution, 
respectively? The other potential future research directions can involve 
the application of other waste-generation fractions and points (Letelier 
et al., 2022), stochastic characteristics (Adeleke and Ali, 2021), or 
objective functions with a sustainable approach (Rathore et al., 2020). 
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Appendix A 

Appendix A involves a table describing the mathematical notation used in the mathematical model, which was presented in Matušinec et al. (2022) 
and Nevrlý et al. (2021) – parts that were used in the paper are below. Further, some variants of model formulation were used for testing purposes of 
developed approaches (see Table A1). 

Single-objective formulation. 

minz1 or minz2 (1)  

z1 =
∑

a∈A
δa (2)  

z2 =

∑
a∈Apa

∑
j∈Jxj dj Mout(j, a)

∑
a∈Apa

(3)  

z2 ≤ wtar (4)  

qa ≤ δa ca∀a ∈ A (5)  

ya +
∑

j∈J
xj Mout(j, a) = 1  

∀a ∈ A (6)  

qa = paya +
∑

j∈J

∑

b∈A
pb xj Mout(j, b) (− Min(j, a))
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∀a ∈ A (7)  

xj ≥ 0∀j ∈ J, (8)  

ya, qa ≥ 0∀a ∈ A (9)  

δa ∈ {0, 1}∀a ∈ A. (10) 

The second model includes these additional constraints, and the objective function is replaced by multi-objective, which uses weights resulting 
from single objective solutions z*

1 and z*
2. The model was used for testing artificial instances. 

Multi-objective formulation. 

min
z1

z*
1
+

z2

z*
2

(11)  

wa =
∑

j∈J
xjdjMout(j,a)∀a ∈ A (12)  

wa ≤ wmax∀a ∈ A (13)  

wa ≥ 0∀a ∈ A (14)  

cminδa ≤ qa∀a ∈ A. (15) 

Single-objective variant 1 (V1). 

minz2 

s.t. (2),(3),(5),(6),(7),(8),(9),(10),(15) and. 

z1 = wtotal 

Single-objective variant 2 (V2). 

minz1  

s.t. (15) 

Single-objective variant 3 (V3). 

minz4 

s.t. (2),(3),(4),(5),(6),(7),(8),(9),(10),(15) and. 

z4 ≤
qa

ca 

Table A1 
Models notation.  

Sets   

A Set of address points,a,b ∈ A 
J Set of edges, j ∈ J 
Parameters   

pa Estimated production of fat waste by address point a [l] 
dj Edge distance [m] 
Mout(j,a) Matrix of outflow edges j from a [-] 
Min(j,a) Matrix of inflow edges j to a [-] 
ca Container capacity [l] 
cmin Minimum container load [l] 
wtar Target average walking distance [m]

wmax Maximal walking distance [m]

wtotal Total number of collection points [-] 
ua The utilization of the collection point in node a [-] 
Variables  
z1 Value of objective function – number of collection points [-] 
z2 Average walking distance [m] 
z4 Maximal utilization of collection points [%] 
xj The proportion of waste production that flows along the edge j [-] 
ya The proportion of waste production from address point a that is assigned to the collection point a [-] 
wa Walking distance of address point a[m]

qa Load at collection point [l] 
Binary variables  
δa Existence of a collection point at the address point a [-]  
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Single-objective variant 4 (V4). 

minz4 

s.t. (2),(5),(6),(7),(8),(9),(10),(12),(13),(15) and. 

z1 ≤ wtotal  

Appendix B 

Multi-objective problem definition (Tables B1 and B2). 

Appendix C 

Single-objective problem definition (Tables C1 and C2). 

Table B1 
Representative selection testing on artificial problem instance.  

Test case GAMS time [s] Number of container 
locations [-] 

Utilization [%] Avg. walking distance [m] 

2% − 40 reps 27.24 17  99.91  86.64 
3% − 60 reps 42.67 17  99.91  88.30 
4% − 80 reps 70.77 21  81.74  75.02 
5% − 100 reps 394.50 20  84.93  74.70 
6% − 120 reps 563.78 22  77.21  70.83 
7% − 140 reps 536.99 25  67.95  65.83 
8% − 160 reps 759.24 23  73.85  68.67 
9% − 180 reps 810.36 26  65.33  64.37 
10% − 200 reps 969.08 26  65.33  65.89 
11% − 220 reps 351.19 28  60.67  64.78 
12% − 240 reps 892.39 30  56.62  59.98 
13% − 260 reps 1,008.06 29  58.57  60.71 
14% − 280 reps 619.69 27  62.91  65.07 
15% − 300 reps 831.94 27  62.91  66.63 
16% − 320 reps 817.89 32  53.08  57.76 
100% − 2,000 reps Unable to compute –  –  –  

Table B2 
Sub-problem definition testing on artificial problem instance.  

Test case Number of clusters [-] Init time – cluster creation 
[hh:mm:ss] 

GAMS time [s] Number of container locations [-] Utilization [%] Avg. walking distance [m] 

200 addresses 13 0:00:20  2,194.91 49  34.67  47.09 
250 addresses 11 0:00:29  1,685.37 48  35.39  47.15 
334 addresses 8 0:01:28  91,652.90 41  41.43  50.95 
500 addresses 6 0:02:22  150,502.00 37  45.91  53.55 
1,000 addresses 3 0:07:41  113,828.20 36  47.18  54.15  

Table C1 
Representative selection testing on artificial problem instance.  

Test case GAMS time [s] Number of container locations [-] Utilization [%] Avg. walking distance [m] 

2% − 40 reps  33.89 17  99.92  85.32 
3% − 60 reps  44.56 17  99.92  94.53 
4% − 80 reps  45.83 17  99.92  87.20 
5% − 100 reps  62.22 18  94.37  90.33 
6% − 120 reps  83.53 17  99.92  92.11 
7% − 140 reps  126.16 18  94.37  90.13 
8% − 160 reps  140.05 18  94.37  89.24 
9% − 180 reps  144.94 17  99.92  91.44 
10% − 200 reps  239.56 18  94.37  91.46 
11% − 220 reps  346.72 17  99.92  98.48 
12% − 240 reps  301.69 18  94.37  93.64 
13% − 260 reps  341.86 18  94.37  86.93 
14% − 280 reps  518.31 17  99.92  97.09 
15% − 300 reps  433.84 18  94.37  95.58 
16% − 320 reps  490.20 17  99.92  96.25 
100% − 2,000 reps  14,123.02 17  99.92  98.90  
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Appendix D 

Artificial problem results – metaheuristic (see Tables D1–D7). 

Table C2 
Sub-problem definition testing on artificial problem instance.  

Test case Number of clusters 
[-] 

Init time – cluster creation [hh:mm: 
ss] 

GAMS time 
[s] 

Number of container locations 
[-] 

Utilization 
[%] 

Avg. walking distance 
[m] 

200 addresses 13 0:00:20  7.41 25  67.95  87.55 
250 addresses 11 0:00:29  12.75 24  70.78  88.32 
334 addresses 8 0:01:28  77.01 21  80.89  91.71 
500 addresses 6 0:02:22  313.36 19  89.40  94.08 
1,000 

addresses 
3 0:07:41  858.66 18  94.37  95.81  

Table D1 
CPLEX solver solution for V1.  

Size Time [s] Avg. walk distance [m] Avg. container load [l] Container count 

1000  3600.27  105.71  949.80 10 
1100  3600.27  100.43  937.36 11 
1200  3600.31  96.53  921.83 12 
1300  3600.34  92.54  927.69 13 
1400  1673.42  90.17  947.07 14 
1500  2426.89  87.46  959.67 15 
1600  785.49  85.67  955.00 16 
1700  741.13  84.09  972.88 17 
1800  918.20  83.25  943.61 18 
1900  840.88  80.56  963.89 19 
2000  1195.08  76.91  964.95 20 
2100  908.50  75.13  964.14 21 
2200  1217.23  72.93  951.50 22 
2300  1035.63  71.89  962.17 23 
2400  1209.83  68.97  953.21 24 
2500  1150.33  70.87  968.28 25 
2600  688.80  67.05  945.58 26 
2700  752.63  65.89  956.74 27 
2800  950.17  63.54  948.50 28 
2900  1224.02  64.93  971.59 29 
3000  1052.59  62.11  940.87 30  

Table D2 
CPLEX solver solution for V2.  

Size Time [s] Avg. walk distance [m] Avg. container load [l] Container count 

1000  96.91  50.00  220.88 43 
1100  63.02  50.00  219.38 47 
1200  83.75  50.00  225.76 49 
1300  74.34  50.00  236.47 51 
1400  94.11  50.00  220.98 60 
1500  62.19  50.00  239.92 60 
1600  66.00  50.00  238.75 64 
1700  68.23  50.00  239.70 69 
1800  87.20  50.00  239.23 71 
1900  125.89  50.00  237.84 77 
2000  121.89  50.00  238.26 81 
2100  89.97  50.00  238.20 85 
2200  101.53  50.00  237.88 88 
2300  151.06  50.00  237.96 93 
2400  73.30  50.00  238.30 96 
2500  84.70  50.00  239.67 101 
2600  85.91  50.00  238.69 103 
2700  89.20  50.00  239.19 108 
2800  99.95  50.00  239.26 111 
2900  92.72  50.00  238.78 118 
3000  106.24  50.00  239.20 118  
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Table D5 
DISH metaheuristic average solution for V1.  

Size Time [s] Avg. walk distance [m] Avg. container load [l] Container count 

1000  3600.00  111.99  949.80 10 
1100  3600.00  107.21  937.36 11 
1200  3600.00  104.94  921.83 12 
1300  3600.00  98.99  927.69 13 
1400  3600.00  97.04  947.07 14 
1500  3600.00  93.94  959.67 15 
1600  3600.00  91.99  955.00 16 
1700  3600.00  89.83  972.88 17 
1800  3600.00  88.21  943.61 18 
1900  3600.00  84.97  963.90 19 
2000  3600.00  83.33  964.95 20 
2100  3600.00  81.65  964.14 21 
2200  3600.00  79.98  951.50 22 
2300  3600.00  78.95  962.17 23 
2400  3600.00  76.99  953.21 24 
2500  3600.00  76.25  968.28 25 
2600  3600.00  73.96  945.58 26 
2700  3600.00  73.37  956.74 27 
2800  3600.00  71.45  948.50 28 
2900  3600.00  71.08  971.59 29 
3000  3600.00  70.63  940.87 30  

Table D3 
CPLEX solver solution for V3.  

Size Time [s] Avg. walk distance [m] Avg. container load [l] Container count Minimal container load [l] 

1000  2.25  50.00  175.89 54 60 
1100  12.27  50.00  102.09 101 60 
1200  3.02  50.00  136.57 81 60 
1300  3.59  50.00  120.60 100 60 
1400  4.14  50.00  121.64 109 60 
1500  4.72  50.00  109.05 132 60 
1600  5.45  50.00  113.19 135 60 
1700  6.23  50.00  119.85 138 60 
1800  7.03  50.00  108.88 156 60 
1900  6.84  50.00  108.37 169 60 
2000  8.84  50.00  115.56 167 60 
2100  8.41  50.00  114.39 177 60 
2200  10.78  50.00  112.54 186 60 
2300  12.06  50.00  116.47 190 60 
2400  13.13  50.00  122.34 187 60 
2500  14.19  50.00  126.08 192 60 
2600  14.64  50.00  127.38 193 60 
2700  15.55  50.00  133.84 193 60 
2800  16.55  50.00  138.32 192 60 
2900  17.11  50.00  148.29 190 60 
3000  17.41  50.00  149.34 189 60  

Table D4 
CPLEX solver solution for V4.  

Size Time [s] Avg. walk distance [m] Avg. container load [l] Container count 

1000  3600.38  269.10  949.80 10 
1100  3600.31  499.72  10311.00 1 
1200  3600.41  342.32  1229.11 9 
1300  3600.42  266.55  927.69 13 
1400  3600.19  –  – – 
1500  3600.20  –  – – 
1600  3600.59  194.64  955.00 16 
1700  3604.19  –  – – 
1800  3600.67  224.82  943.61 18 
1900  3600.81  191.41  963.89 19 
2000  3600.31  –  – – 
2100  3600.69  264.33  964.14 21 
2200  3600.33  –  – – 
2300  3600.34  –  – – 
2400  3601.02  198.11  953.21 24 
2500  3601.06  175.96  968.28 25 
2600  3600.41  –  – – 
2700  3601.30  165.68  956.74 27 
2800  3601.14  222.18  948.50 28 
2900  3601.44  174.43  971.59 29 
3000  3601.13  232.56  940.87 30  
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Appendix F. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cie.2023.109142. 
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Neighbourhood, Çiğli District, Izmir, Turkey. Waste Management and Research, 40(8), 
1297–1310. https://doi.org/10.1177/0734242X211063733 

Viktorin, A., Senkerik, R., Pluhacek, M., Kadavy, T., & Zamuda, A. (2019). Distance based 
parameter adaptation for success-history based differential evolution. Swarm and 
Evolutionary Computation, 50, Article 100462. https://doi.org/10.1016/j. 
swevo.2018.10.013 

Vu, H. L., Ng, K. T. W., & Bolingbroke, D. (2018). Parameter interrelationships in a dual 
phase GIS-based municipal solid waste collection model. Waste Management, 78, 
257–270. https://doi.org/10.1016/j.wasman.2018.05.050 

A. Viktorin et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.cie.2021.107759
https://doi.org/10.1016/j.cie.2021.107759
https://doi.org/10.1016/j.cie.2020.106965
https://doi.org/10.1016/j.cie.2020.106965
https://doi.org/10.1016/j.ejor.2013.10.005
https://doi.org/10.1016/j.cor.2014.05.003
https://doi.org/10.1016/j.cor.2014.05.003
https://doi.org/10.1177/0734242X17706753
https://doi.org/10.1177/0734242X17706753
https://doi.org/10.1016/j.cie.2019.106047
https://doi.org/10.1016/j.cie.2019.106047
https://doi.org/10.1016/j.cor.2013.10.006
https://doi.org/10.1016/j.wasman.2012.02.009
http://refhub.elsevier.com/S0360-8352(23)00166-3/h0080
http://refhub.elsevier.com/S0360-8352(23)00166-3/h0080
http://refhub.elsevier.com/S0360-8352(23)00166-3/h0095
http://refhub.elsevier.com/S0360-8352(23)00166-3/h0095
http://refhub.elsevier.com/S0360-8352(23)00166-3/h0095
https://doi.org/10.1016/j.ejor.2021.02.060
https://doi.org/10.1287/trsc.2013.0459
https://doi.org/10.1287/trsc.2013.0459
https://doi.org/10.1007/978-3-030-05532-5_44
https://doi.org/10.1007/978-3-030-05532-5_44
https://doi.org/10.1007/s12351-019-00538-5
https://doi.org/10.1007/s12351-019-00538-5
https://doi.org/10.1057/jors.2008.195
https://doi.org/10.1057/jors.2008.195
https://doi.org/10.1016/j.seta.2019.01.006
https://doi.org/10.1016/j.seta.2019.01.006
https://doi.org/10.1177/0734242X20986610
https://doi.org/10.1007/s10586-018-2544-x
https://doi.org/10.1007/s10586-018-2544-x
https://doi.org/10.1177/0734242X211003975
https://doi.org/10.1504/IJMCDM.2016.075617
https://doi.org/10.1504/IJMCDM.2016.075617
https://doi.org/10.1007/s10479-022-04918-7
https://doi.org/10.1007/s10479-022-04918-7
https://doi.org/10.1007/s10098-021-02087-y
https://doi.org/10.1007/s10098-021-02087-y
https://doi.org/10.1016/j.engappai.2020.104121
https://doi.org/10.1016/j.engappai.2020.104121
https://doi.org/10.1016/j.trpro.2021.02.096
https://doi.org/10.1016/j.trpro.2021.02.096
https://doi.org/10.1016/j.eswa.2020.113317
https://doi.org/10.3303/CET1976093
https://doi.org/10.3303/CET1976093
https://doi.org/10.1016/j.jclepro.2020.123445
https://doi.org/10.1155/2019/3612809
http://refhub.elsevier.com/S0360-8352(23)00166-3/h0195
http://refhub.elsevier.com/S0360-8352(23)00166-3/h0195
http://refhub.elsevier.com/S0360-8352(23)00166-3/h0195
https://doi.org/10.1016/j.ejor.2021.12.018
https://doi.org/10.1016/j.ejor.2021.12.018
https://doi.org/10.1016/j.eswa.2016.08.061
https://doi.org/10.1016/j.eswa.2019.01.046
https://doi.org/10.1016/j.jclepro.2017.09.029
https://doi.org/10.1016/j.cie.2020.106692
https://doi.org/10.1007/s10668-019-00347-y
https://doi.org/10.17533/udea.redin.20190509
https://doi.org/10.1007/978-3-030-12804-3_9
https://doi.org/10.1016/j.wasman.2020.02.016
https://doi.org/10.1007/s10479-009-0651-z
https://doi.org/10.1016/j.wasman.2019.10.018
https://doi.org/10.1016/j.wasman.2021.07.018
https://doi.org/10.1016/j.wasman.2014.09.010
https://doi.org/10.1007/s10472-019-09647-5
https://doi.org/10.1007/s10472-019-09647-5
https://doi.org/10.1016/j.wasman.2010.06.017
https://doi.org/10.1016/j.wasman.2010.06.017
https://doi.org/10.1504/IJEWM.2018.093436
https://doi.org/10.1177/0734242X211063733
https://doi.org/10.1016/j.swevo.2018.10.013
https://doi.org/10.1016/j.swevo.2018.10.013
https://doi.org/10.1016/j.wasman.2018.05.050


Computers & Industrial Engineering 178 (2023) 109142

20

Wang, Y., Assogba, K., Liu, Y., Ma, X., Xu, M., & Wang, Y. (2018). Two-echelon location- 
routing optimization with time windows based on customer clustering. Expert 
Systems with Applications, 104, 244–260. https://doi.org/10.1016/j. 
eswa.2018.03.018 

Ward, J. H., Jr. (1963). Hierarchical grouping to optimize an objective function. Journal 
of the American Statistical Association, 58(301), 236–244. https://doi.org/10.1080/ 
01621459.1963.10500845 

Xu, Q., Zhang, Q., Liu, J., & Luo, B. (2020). Efficient synthetical clustering validity 
indexes for hierarchical clustering. Expert Systems with Applications, 151, Article 
113367. https://doi.org/10.1016/j.eswa.2020.113367 

Zamorano, M., Molero, E., Grindlay, A., Rodríguez, M. L., Hurtado, A., & Calvo, F. J. 
(2009). A planning scenario for the application of geographical information systems 
in municipal waste collection: A case of Churriana de la Vega (Granada, Spain). 
Resources, Conservation and Recycling, 54(2), 123–133. https://doi.org/10.1016/j. 
resconrec.2009.07.001 

Zbib, H., & Laporte, G. (2020). The commodity-split multi-compartment capacitated arc 
routing problem. Computers and Operations Research, 122, Article 104994. https:// 
doi.org/10.1016/j.cor.2020.104994 

A. Viktorin et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.eswa.2018.03.018
https://doi.org/10.1016/j.eswa.2018.03.018
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1016/j.eswa.2020.113367
https://doi.org/10.1016/j.resconrec.2009.07.001
https://doi.org/10.1016/j.resconrec.2009.07.001
https://doi.org/10.1016/j.cor.2020.104994
https://doi.org/10.1016/j.cor.2020.104994

	Hierarchical clustering-based algorithms for optimal waste collection point locations in large-scale problems: A framework  ...
	1 Introduction
	2 Literature review
	2.1 Waste management in operations research
	2.2 Waste management logistics: Bin location problems
	2.3 Clustering methods and waste bin location problems
	2.4 Novelty and contribution

	3 Methods and algorithms
	3.1 Workflow of approaches
	3.2 Noise filtering
	3.3 Optional capacitated K-means clustering
	3.4 Representative selection
	3.5 Sub-problem definition
	3.6 Artificial problem testing

	4 Case studies
	4.1 Zlín – Noise filtering
	4.2 Zlín – Representative selection
	4.3 Zlín – Sub-problem definition
	4.4 Zlín – Approach comparison
	4.5 Prague – Case study

	5 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A Acknowledgments
	Appendix B Acknowledgments
	Appendix C Acknowledgments
	Appendix D 

	Appendix F Supplementary material
	References


